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Abstract—Memory issues pose the most critical problem in
designing a high-performance JPEG 2000 architecture. The tile
memory occupies more than 50% area in conventional JPEG
2000 designs. To solve this problem, we propose a stripe pipeline
scheduling. It well matches the throughputs and dataflows of the
discrete wavelet transform and the embedded block coding to
minimize the data lifetime between the two modules. As a result of
the scheduling, the overall memory requirements of the proposed
architecture can be reduced to only 8.5% compared with conven-
tional architectures. This effectively reduces the hardware cost of
the entire system by more than 45%. Besides reducing the cost,
we also propose a two-symbol arithmetic encoder architecture to
increase the throughput. By use of this technique, the proposed
architecture can achieve 124 MS/s at 124 MHz, which is the
highest specification in the literature. Therefore, the proposed
architecture is not only low cost but also high speed.

Index Terms—Discrete wavelet transform, embedded block
coding with optimized truncation, image coding, JPEG 2000.

I. INTRODUCTION

JPEG 2000 [3], [4] is well known for its excellent coding per-
formance and numerous features [5], such as region of in-

terest, various kinds of scalabilities, error resilience, and so on.
All these powerful tools can be provided by a unified algorithm
in a single JPEG 2000 codestream. JPEG 2000 adopts the dis-
crete wavelet transform (DWT) and the embedded block coding
with optimized truncation (EBCOT) [6] as its core coding al-
gorithms, which are totally different from the algorithms used
in JPEG [7]. By use of the new coding tools, JPEG 2000 out-
performs JPEG by more than 2 dB in peak signal-to-noise ratio
[5] in general. However, the complexity of JPEG 2000 is much
higher than that of JPEG. Thus, dedicated hardware implemen-
tation is a must for real-time JPEG 2000 applications. Recently,
on-chip memory requirement has been the major bottleneck to
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design a high performance JPEG 2000 encoder. In this paper, we
propose a stripe pipeline scheduling to reduce the memory re-
quirements of the JPEG 2000 encoder. The stripe pipeline sched-
uling scheme can reduce the on-chip memory size, which occu-
pies over 50% of chip area in conventional JPEG 2000 encoders,
to only 8.5% compared with the conventional architecture [8].

Since dedicated hardware acceleration is a must for real-time
JPEG 2000 applications, many architectures for JPEG 2000
have been proposed [8]–[16]. All the above architectures focus
on how to overcome the computation complexity, especially
for the embedded block coding (EBC). The solutions can be
classified into two categories. The first one is to use multiple
EBC engines [8], [10]–[12], [16], which process multiple
code-blocks in parallel. The second one is to increase the pro-
cessing rate of the EBC engine [13]–[15], [17] by processing
multiple bit-planes in parallel. Using multiple EBC engines can
increase the throughput without increasing operating frequency.
However, the major disadvantage of this approach is that it
needs to use multiple code-block memories and state variable
memories, whose size is commonly 6 and 2.5 KB for a 64
64 code-block. In [13], an EBC architecture capable of en-
coding two bit-planes in parallel was proposed. This technique
increases the throughput of the EBC without using multiple
memories. In [17] and [18], a parallel EBC architecture is
proposed, which can increase the processing rate of the EBC
while maintaining similar hardware cost with architectures that
use single EBC engine. Since the parallel EBC architecture can
process one DWT coefficient per cycle with even less hardware
cost than a conventional EBC architecture, the problems of
insufficient computational power of the EBC are well solved.
Therefore, memory issues become the bottleneck of a JPEG
2000 design. Block-based scan for DWT [13], [19], [20] is
proposed to eliminate the use of tile memory, whose size is
commonly 128 KB for a 256 256 tile, at the cost of the
increase of memory bandwidth. Although the tile memory
is eliminated, the scan order of the block-based scan is not
optimized such that the memory requirements are still too high.

In this paper, we will present a stripe pipeline scheduling to
solve the above problems. The stripe pipeline scheduling takes
the throughputs and the dataflows of the DWT and the EBC into
joint consideration. The main idea is to match the throughputs
and the dataflows of the two modules so that the DWT coeffi-
cients generated are processed by the EBC as soon as possible.
Thus, the size of local buffers between the two modules is min-
imized. To achieve the stripe pipeline scheduling, a level switch
DWT (LS-DWT) and a code-block switch EBC (CS-EBC) are
proposed. The CS-EBC can process 13 code-blocks in parallel,
and LS-DWT can accomplish multilevel two-dimensional DWT
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Fig. 1. Decomposition of an image into various abstract levels. These abstract levels include tiles, subbands, code-blocks, bit-planes, and coding passes.

Fig. 2. Output order of DWT coefficients. Although the order of the coefficients
within a subband varies with the input scan order, the colocated coefficients in
all subbands are always generated consequently.

concurrently. As a result of the stripe pipeline scheduling, the
memory requirements are reduced to only 8.5% compared with
conventional architectures for 256 256 tile.

This paper is organized as follows. Section II reviews the
JPEG 2000 for the description that follows. The proposed ar-
chitecture is described in Section III. In Section IV, implemen-
tation results are given and are compared with state-of-the-art
JPEG 2000 architectures. Section V summaries this paper.

II. JPEG 2000

In this section, we will briefly review the JPEG 2000 coding
system, especially the dataflow. Fig. 1 shows how an image is
decomposed into abstract levels, which include tiles, subbands,
code-blocks, bit-planes, and coding passes. The original image
is partitioned into several rectangular tiles, which are indepen-
dently coded. The DWT decomposes a tile into levels. Except
for the th level that has four subbands, each level has three
subbands, including the HL, LH, and HH bands. In general, the
DWT coefficients colocated at each subband are generated con-
sequently. Fig. 2 shows an example of an 8 8 tile. Each circle
represents a DWT coefficient, and the number within the circle
indicates the order it is generated. The order of the DWT coeffi-
cients generated within each subband depends on the scan order
of the DWT engine. However, the colocated DWT coefficients
are always generated consequently.

For the EBC, each subband is further partitioned into code-
blocks. The DWT coefficients of a code-block are sign-magni-

Fig. 3. Block diagram of the EBC algorithm. It is a context-based arithmetic
encoder. The context formation generates the context for the arithmetic encoder
to adapt the probability of the decision.

Fig. 4. Procedure of interval subdividing and renormalization. After coding a
symbol, A is updated by one of the subintervals, i.e., Q and A�Q , and the
renormalization is triggered whenever the updated A is too small.

tude represented and are processed in a bit-plane by bit-plane
manner, from the most significant bit bit-plane to the LSB bit-
plane. Every bit-plane has three coding passes called Pass 1,
Pass 2, and Pass 3. A special coding order called stripe scan
is used within any coding pass. A stripe is an 4 rectangle,
where is the width of the code-block. The coefficients are
scanned stripe by stripe from top to bottom in a coding pass,
and column by column from left to right in a stripe.

The EBC is a context-adaptive arithmetic encoder (AE), as
shown in Fig. 3. The context formation generates the context-de-
cision pair of a sample coefficient according to the coding states
of the sample coefficient itself and its eight-connected neigh-
bors. The AE is an adaptive, binary MQ-coder. The MQ-coder
is a Q-coder [21] that is enhanced by a conditional exchange
procedure derived from the MELCODE [22] and the state-tran-
sition table known as JPEG-FA [7]. The encoding process of
the AE is an iteratively subdividing process of an interval, as
shown in Fig. 4. The interval is divided into two subintervals

and , and its base is indicated by . The value of
is adapted by the context, denoted by . Each subinterval cor-
responds to a symbol, which can be either 0 or 1. The larger one
is called the most probable symbol (MPS) while the other is the
least probable symbol (LPS). According to the symbol, and
are updated. A renormalization procedure is called whenever
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Fig. 5. Proposed JPEG 2000 architecture. No tile memory is required in the proposed architecture. Instead, seven stripe buffers are used, which are much smaller
than the tile memory.

is smaller than a specific value. The bit stream is a pointer to the
final interval. For more detailed operations of the context for-
mation and the arithmetic encoder, the reader is referred to [6].

III. SYSTEM ARCHITECTURE

In this section, the proposed JPEG 2000 architecture is pre-
sented. The block diagram of the architecture is shown in Fig. 5.
Seven stripe buffers (SBs) are used for the stripe pipeline sched-
uling; each buffer has 256 11 bits. The LS-DWT generates
256 coefficients for each subband at every pipeline stage. The
resulting coefficients are stored in the SBs, and then processed
by the CS-EBC.

A. Stripe Pipeline Scheduling

In this section, a stripe pipeline scheduling for JPEG 2000 is
proposed. The key concept is to design a scheduling that can
minimize the memory requirement while maintaining reason-
able complexity and overhead. As described in Section II, the
memory issues are arisen from the mismatch between output
dataflow of the DWT and the input scan order of the EBC. The
mismatch can be solved by using a buffer between the two mod-
ules. In conventional architectures [8]–[11], the whole tile and
several code-blocks are buffered. Wu et al. [19] proposed a quad
code-block (QCB) scheduling scheme that reduces the memory
requirements to 1/4 tile and six code-blocks. They also propose
a modified QCB scheme [20] to support large tile size. However,
the memory requirements are still too high. The proposed stripe
pipeline scheduling can fully eliminate the use of tile memory
and code-block memory.

An example of the stripe pipeline scheduling is shown in
Fig. 6. It is an example for a 256 256 tile with three de-
composition levels and for 64 64 code-block. Each rectangle
represents a pipeline stage of the scheduling, which is a com-
putation state of either the LS-DWT or the CS-EBC. The state
of LS-DWT is indicated by, for example, ,
which means that the LS-DWT is generating left half of the
th row to the th row in the th level of the th tile. On the

other hand, the state of CS-EBC is indicated by, for example,
, which means that the CS-EBC is processing the

th stripe of the th code-block to the th code-block of the th
tile. The order of execution is from top to bottom. All the com-
putation states require 768 cycles except when the CS-EBC is
at state, which needs 1024 cycles. In fact, the
cycles required in each state are, actually, the number of DWT
coefficients that the CS-EBC must encode.

The superiority of the stripe pipeline scheduling lies in that it
greatly reduces the data lifetime between the DWT and the EBC.
In conventional tile pipeline scheduling, the coefficients trans-
formed by the DWT are encoded by the EBC until the transfor-
mation of the entire tile is finished. Therefore, the data lifetime
equals the processing time of the DWT for a tile. As can be seen
in Fig. 6, the data lifetime of the stripe pipeline scheduling is
the processing time of a pipeline stage. For the example shown
in Fig. 6, the data lifetime is reduced from 256 256 (one tile)
to 256 4 (four stripes). Moreover, the reduction rate increases
as the increase of tile size. This is because the data lifetime of
the tile pipeline scheduling is proportional to the square of tile
width, while that of the stripe pipeline scheduling is proportional
to tile width only. The memory requirement is also greatly re-
duced since it is approximately proportional to data lifetime.

For the stripe pipeline schedule, seven stripe buffers are
required as shown in Fig. 5. Each stripe buffer is 256 11
bits, where 11 is the bit-width of a DWT coefficient. While the
LS-DWT is writing coefficients into SB-LH0, SB-HL0, and
SB-HH0, the CS-EBC is reading coefficients from SB-LH1,
SB-HL1, and SB-HH1, or vice versa. When the LS-DWT is
processing or the CS-EBC is processing , SB-LL
must be accessed by the corresponding module. Therefore,
the proposed scheduling only requires about 2.4 KB or 1.75
Kwords (KW) memory, equivalently.

B. Level Switch DWT

In this section, an LS-DWT architecture is proposed. It can
greatly reduce the memory requirements of the DWT in JPEG
2000. Fig. 7 shows the architecture of the LS-DWT. It has four
major parts, including the two 1-D DWT cores, the line-buffer,
and the LL-band buffer. The LL-band buffer stores the LL-band
coefficients of lower levels for the decomposition of higher
level. In order to switch among different levels with efficient
memory usage, the line-based implementation [23] combined
with nonoverlapped stripe-based scan [24] is adopted. In the
following, the dataflow and memory requirement of the adopted
line-based scheme for 2-D decomposition is presented, and the
memory requirement for level switch is analyzed. In the fol-
lowing analyses, the 2-D DWT is accomplished in column-first
order to be compatible with JPEG 2000.

1) 2-D Architecture: Fig. 8 shows a generic line-based 2-D
DWT architecture in column-first order. The line buffer con-
tains the data buffer and temporal buffer. The size of the data
buffer depends on the scheduling of 1-D column and row DWT.
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Fig. 6. Stripe pipeline scheduling. The LS-DWT and CS-EBC are pipelined at stripe level, and therefore the buffer size is reduced to the same as the stripe size.
The cycles of a pipeline stage are the coefficients to be processed by the CS-EBC.

Fig. 7. Block diagram of the proposed LS-DWT. It can accomplish multilevel
decomposition by two 1-D DWT core.

At the extreme case that row DWT starts after complete column
filtering, the size of the data buffer is the same as the tile size.
To reduce the size of the data buffer, row DWT must start as

Fig. 8. Generic line-based 2-D DWT architecture. The line buffer contains data
buffer and temporal buffer.

soon as possible to reduce the lifetime of intermediate coeffi-
cients. Fig. 9 shows the data flow of the adopted nonoverlapped
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Fig. 9. Nonoverlapped block-based scan. The numbers denote which cycle the
coefficients are scanned. The intermediate coefficients are buffered for only sev-
eral cycles.

Fig. 10. Lifting-based implementation of 9-7 filter for line-based column
DWT. It requires four intrinsic registers.

stripe-based scan in the line-based DWT. Each circle represents
either a pixel or an intermediate coefficient between 1-D column
and row DWT module. The numbers indicate in which cycle the
coefficients are scanned. The intermediate coefficients are gen-
erated right after the colocated original pixels are scanned. For
example, the two coefficients denoted by 3 and 4 in the first
column are generated when pixels denoted by 0 are scanned.
Thus, only eight registers are required to buffer the interme-
diate coefficients. Therefore, the data buffer is eliminated with
the nonoverlapped stripe-based scan.

Because the nonoverlapped stripe-based scan requires that the
column DWT switch among columns, the intrinsic registers in-
side column DWT should also be buffered. This is the temporal
buffer depicted in Fig. 8. Fig. 10 shows the lifting-based archi-
tecture for 1-D DWT [25], [26] for 9-7 filter. There are four
intrinsic registers in this case, and therefore the size of the tem-
poral buffer equals to four lines of the tile. Assume that the
tile width is 256 pixels: the temporal buffer is

words.
2) Memory Requirement for LS-DWT: In order to reduce

the memory bandwidth and computational complexity, the in-
termediate data stored in line-buffer must be buffered when the
LS-DWT switches to the next level. Thus, the DWT can con-
tinue its operation seamlessly after it switches back to the pre-
vious level. For level-switch DWT with decomposition levels,
the line-buffer requirement

words, where is the tile width and 9-7 filter is as-
sumed. For example, for three-level DWT, the line buffer size

. Therefore,
it requires 3136 bytes for the line buffer since the coefficient is
14 b in the proposed architecture.

Since is the input of (l 1)th level DWT, the coefficients
in LL-band have to be buffered in preparation for the next de-
composition level. In conventional architectures, all the coef-
ficients in LL-band are buffered since they start the decompo-
sition of next level after the finishing of previous level. In the
proposed architecture, the LS-DWT can switch to the next level

within the decomposition of previous level. Thus, the memory
requirement is reduced. The size of memory is equal to the life-
time of coefficients in each level, i.e., the period between the
generation and consumption of the coefficients. As shown in
Section III-A, the LS-DWT switches to the next level whenever
1024 coefficients are generated. Thus, memory for 1024 coef-
ficients is required. However, this is not enough since there is
latency arising from the 1-D DWT filter. For a 9-7 filter, the la-
tency is four coefficients, i.e., the first coefficient is generated
after the fifth pixel is read, as shown in Fig. 10. The lifetime
of the coefficients is actually 1024 4 , where
is the width of the corresponding LL-band. In the proposed
architecture, the bit-width of the coefficients is 11 b and the
number of decomposition levels is three with 256 256 tile.
Thus, the memory requirement for all LL-bands is

. Therefore, the
total memory requirement for the proposed three-level LS-DWT
is about 7 KB.

C. Code-Block Switch EBC

In this section, the architecture of the CS-EBC is described.
The block diagram of the CS-EBC is shown in Fig. 11. It
comprises four functional modules: the Gobang register bank
(GRB), the parallel context formation (PCF), the sorting
first-in-first-out (SFIFO), and the code-block switch arithmetic
encoder (CSAE). The CS-EBC is based on the parallel EBC
architecture proposed in [17] and [18] and is evolved to increase
the throughput and to support the code-block switch function.
In the following, we will describe the modules in more detail
except the PCF module, which is exactly the same as the one
in the parallel EBC architecture.

1) Gobang Register Bank: There is only one difference be-
tween the GRB module in the CS-EBC and the one in the par-
allel EBC, which lies in the word length of the line buffer.
In order to switch among 13 code-blocks, the line buffer is
lengthened for 13 code-blocks. The number of words becomes

for 13 code-blocks. Although processing
13 code-blocks at the same time, there is only one code-block
active in a cycle. Therefore, only one memory is required. Due to
the nature of SRAM, the area of a 704 12 single port SRAM
is only about three times the area of a 64 12 one, which is
much smaller than the ratio 11 of the words of SRAMs.

2) Sorting First-In-First-Out: The reason to use an FIFO in
the CS-EBC is the same as that in the parallel EBC, which is to
solve the problem of instantaneous mismatch of throughputs be-
tween the PCF and the CSAE. However, their goals are different.
In the parallel EBC, a cost-effective architecture is the major de-
sign goal. On the other hand, high throughput is the major design
goal for the CS-EBC. Thus, the sorting first-in-first-out (SFIFO)
is proposed, which is composed of ten FIFOs and a sorting
module. All the FIFOs have six registers. The sorting module
selects six FIFOs, which contain the most context and decision
(CXD)] pairs, for the six MQ-coders. The RFIFO proposed in
[17] and [18] restricts the th MQ-coder to only process CXD
pairs from the th bit-plane and the (9 )th bit-plane. Thus, it
sometimes happens that some FIFO may be full, which results in
stall of the whole system, while some MQ-coders are available.
By using the sorting module, it is guaranteed that no stalls would
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Fig. 11. Block diagram of the CS-EBC. It can process a DWT coefficient in a cycle, and process 13 code-blocks at the same time.

Fig. 12. Block diagram of the CSAE module. By use of the state buffer and the state register bank, it can concurrently process bit streams of 13 code-blocks.

occur unless all the MQ-coders are busy. The sorting module is
realized by the merging networks [27].

3) Code-Block Switch Arithmetic Encoder: In order to
support code-block switch, we proposed a CSAE as shown in
Fig. 12. It contains three parts, including the state register bank
(SRB), the state buffer, and the six two-symbol MQ coders
(TMCs). The state buffer stores the coding state registers for bit
streams that are currently processed. The memory requirements
for a magnitude bit-plane is 399 b. Thus, a code-block with ten
magnitude bit-planes requires 3990 b. Therefore, total memory
requirement is 51 870 b since 13 code-blocks are processed in
parallel in the proposed architecture.

The SRB has two main functions. First, it acts as the register
bank for the TMCs. It provides proper coding states according
to parameters from the SFIFO and writes back the coding results
from the TMC. Secondly, it reads the coding states of the next
code-block to be processed from the state buffer and writes the
coding states of the previous code-block back to the state buffer.
Each RB has two sets of state registers, each set containing 400
bit registers, for ping-pong mode operation, one for the TMC
and the other one for the load/store. There are 256 cycles for
the SRB to complete the load/store since each stripe spends 256
cycles. Thus, the minimal bandwidth requirement is

bits per cycle. Therefore, the bitwidth of the

Fig. 13. Block diagram of the TMC module. It always encodes two symbols
per cycle.

bus is decided as 16 bit when two-port memory is used. Under
this configuration, the register bank for load/store is configured
as 25 16-b shift registers. During the load/store, read data and
write data are shifted in and out concurrently. The load/store of
the ten RBs performs one by one. Therefore, it takes 250 cycles
to complete the load/store for a code-block, which is very close
to the allotted time, 256.

The configuration of the SRB is the result of compromise
between the hardware complexity and the power consumption.
At the extreme case of low hardware complexity, all the registers
can be connected as a long shift register bank containing 250
registers. However, this scheme will consume very high power
since all the registers are active at every cycle. On the other hand,
low power consumption can be achieved by using a 250-to-1
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Fig. 14. Directly concatenating two-symbol code update module. It is obtained by concatenating two one-symbol code update modules, in which the circuits in
gray are for the first symbol and the circuits in white are for the second symbol. The critical path is drawn by dashed lines.

Fig. 15. Architecture of the two-symbol code update module. The second Update C module is in parallel with the first byte output module by modifying the first
bit stuffing module to reduce the critical path that drawn by dashed lines.

multiplexer and a counter. By using the counter to control the
multiplexer, only one register is read and written in each cycle.
Thus, power consumption can be greatly reduced. However, the
hardware complexity and the delay are too high. In the proposed
SRB, registers in one bit-plane are grouped as a shift register
bank. Thus, there are ten shift register banks. Each time, only
a shift register bank is active. The power consumption can be
greatly reduced since only 25 registers are active instead of 250
registers in the one shift register bank scheme. Moreover, only
a 10-to-1 multiplexer and a four-bit counter are required, which
are much simpler than the scheme that does not use shift register
bank.

There are two special cases for the operations of the SRB.
In the first case, no loading is required when the code-block is
coded for the first time. In this case, the registers are reset to spe-
cific initial values. The other case happens when the code-block
is finished, and therefore the state registers are no longer re-
quired to store back to the state buffer. Instead, flush is required
to finalize the bit streams. Thus, a small flush circuit, as shown

TABLE I
MEMORY REQUIREMENT COMPARISON FOR 256 � 256 TILE WITH THREE

DECOMPOSITION LEVELS AND THE CODE-BLOCK SIZE ASSUMED TO BE

64 � 64. THE COLUMN DENOTED BY TILE 512 IS THE TOTAL MEMORY

REQUIREMENT WHEN THE TILE SIZE IS 512 � 512

in Fig. 12, is used for all the bit streams. The flush circuit only
requires one cycle to finalize a bit stream, and thus 28 cycles are
required for a code-block. Since the flushing can be performed
in parallel with the loading of next code-block, no extra cycles
are required.
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Fig. 13 shows the block diagram of theproposedTMC module.
It is based on the MQ coder proposed in [28], and extended to
encode two symbols per cycle. The two-symbol interval up-
date module updates and renormalizes the interval register, ,
according to the two input symbols. It is obtained by directly
concatenating two one-symbol interval update modules since
the resulting data path still meets the system timing constraint.

Fig. 14 shows the two-symbol code update module by directly
concatenating two code update modules proposed in [28]. The
circuits in gray are for the first symbol, and the ones in white
are for the second symbol. In Fig. 14, the Update C module up-
dates according to the range (either MPS or LPS) coded in the
interval update stage. is the renormalization amount calcu-
lated in the interval update stage. The Bit Stuffing 0 module per-
forms bit stuffing and generates a zero mask to remove the bits
that has been outputted in . The Byte Output module generates
the output bit streams and the corresponding control signals

. The critical path, drawn by dashed lines in Fig. 14, of this
architecture includes the first Update C module, the first byte
output module, the first adder, the second Update C module, the
second Byte Output module, and the second adder. Although
the above two-symbol code update module seems trivial, the ar-
chitecture is much faster than two-symbol architecture by di-
rectly concatenating two conventional architecture. This is be-
cause the Bit Stuffing 0 module and the Update C module in the
proposed one symbol code update module are processed par-
tially in parallel.

In order to further reduce the critical path, the circuits for
the first symbol has been modified to enable more parallel pro-
cessing. The final architecture of the two-symbol code update
module is shown in Fig. 15. The Bit Stuffing 1 module is modified
from the original Bit Stuffing 0 module to enable two-step zero
masking. At the first step, bits in are removed as if there is only
one byte outputted . Thus, the second Update C module
can be processed in parallel with the first Byte Output module.
However, there will be a wrong bit if the first Byte Output module
outputs two bytes. The shifter and XOR gate in gray are used to
solve this problem. As can be seen in Fig. 15, the critical path,
drawn by dashed lines, now includes the two Update C modules,
the XOR gate, the multiplexer, the second Byte Output module,
and the second adder, which is shorter than the architecture
shown in Fig. 14. Since there is no pipeline between the interval
update module and the code update module, the overall critical
path starts from the interval module. However, it is not as long
as one may consider, because the code update of the first symbol
only depends on the result of the interval update of the first
symbol. Therefore, the overall critical path will be that of the
code update module plus the interval update for the first symbol.

IV. EXPERIMENTAL RESULTS

A. Memory Reduction

To show the performance on memory reduction of the pro-
posed stripe pipeline scheduling, we compare the memory
requirements for DWT coefficients between the DWT and the
EBC in various architectures. The memory requirements de-
pends on the specification of the architecture. Without loss of
generality, we assume that the tile size is 256 256 and the

Fig. 16. Path delay of the proposed TMC architecture and the conventional
architecture. As a result of the proposed techniques, the critical path has been
reduced from 22 to 16 ns without extra hardware.

TABLE II
HARDWARE COST OF THE PROPOSED ARCHITECTURE

code-block size is 64 64. The memory requirements of var-
ious architectures are shown in Table I. In this table, memory
requirements within the DWT and the EBC are not shown since
the scheduling will only affect the tile memory requirements.
In Table I, the Tile column is the memory size for storing DWT
coefficients and the CB column is the code-block memory for the
EBC. The DWT column and the EBC column are the additional
memory requirements for the DWT and the EBC to support the
stripe pipeline scheduling. The numbers in the last column are
the total memory requirements if the tile size is 512 512. By
the table, the memory requirements are reduced to only 8.5%
compared with Amphion’s architecture [8] and 18.8% compared
with Wu’s architecture [19], [20] when the tile size is 256 256.

There is another important advantage of the proposed stripe
pipeline scheduling: the memory requirements are proportional
to the square-root of the tile size while memory requirements
of conventional architectures are proportional to the tile size.
Therefore, the savings ratio increases with the increase of tile
size. As can be seen from Table I, the memory requirement of the
proposed architecture is only 4.6% of Amphion’s architecture
[8] for 512 512 tile while it is 8.5% for 256 256 tile.

B. TMC Architecture

In order to show the effectiveness of the proposed parallel
techniques described in Section III-C3, the proposed TMC ar-
chitecture and the conventional architecture have been synthe-
sized with UMC 0.18 cell library. The two architectures
have been synthesized by loose timing constraint to exclude
the influence of the synthesis variation. The gate counts of the
two architecture are almost the same. The conventional two-
symbol architecture is obtained by cascading two conventional
one-symbol architectures [29]. The distribution of path delay is
shown in Fig. 16. The critical path has been reduced from 22 to
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TABLE III
COMPARISON WITH OTHER ARCHITECTURES

16 ns by the proposed techniques. Note that the proposed tech-
niques reduce the critical path without the increase of hardware
cost.

C. Implementation

The proposed architecture has been described by the Ver-
ilog HDL and synthesized with Artisan UMC 0.18 m cell li-
brary. The hardware costs are summarized in Table II. This
architecture can operate at 124 MHz, which is capable of en-
coding HDTV 1920 1080 4:2:2 at 30 frames per second (fps)
in real-time. The total logic gate counts are 243 792 gates (in
two-input NAND gate equivalent) and the overall memory re-
quirement is 133.25 Kb. The tile size can be up to 256 256 and
the code-block size can be up to 64 64. The memory for DWT
is composed of two 448 28 SRAMs, ten 256 11 SRAMs,
and two 128 11 SRAMs. The Stripe Buffer has seven 256
11 SRAMs and the memory for the GRB module is a 704 12
SRAM. All the above memory has been carefully designed to
be able to use the single-port SRAM. This has the advantage of
low power consumption. On the other hand, the memory for the
CSAE is a two-port 3264 16 SRAM since it is inevitable to
use two-port SRAM.

The experimental results about the required computation cy-
cles are not shown here since the number of cycles is exactly
the same as the number of samples to be encoded. Four stan-
dard test images—Lena, Baboon, Jet, and Pepper—are exam-
ined, and the processing cycles are all the same with the samples
to be coded.

D. Comparison

In this section, the proposed architecture is compared with
the other architectures. Table III lists the hardware cost as well
as the specifications of various architectures. Although the pro-
posed architecture needs more logic gates, the memory require-
ment is only 33% of others. According to the implementation
results in [15], the silicon area occupied by memory is about half
of the whole design. Thus, the resulting silicon area of the pro-
posed architecture will be smaller than others. However, the pro-
posed architecture achieves highest throughput/frequency ratio.
The memory reduction comes from the proposed stripe pipeline
scheduling. On the other hand, the throughput increase is the re-
sult of increasing throughput of the arithmetic encoder with the
overhead of more logic gate counts.

V. CONCLUSION

In this paper, a memory efficient JPEG 2000 architecture
with stripe pipeline scheduling is proposed. The stripe pipeline
scheduling takes the throughputs and dataflows of the DWT and
the EBC into joint consideration. By matching the throughputs
and dataflows of both modules, the tile memory is replaced by
the stripe memory with additional memory requirements in the
DWT module and in the EBC module. The overall memory
requirements are reduced to only 8.5% of the conventional
architectures. To support the stripe pipeline scheduling, the
LS-DWT and the CS-EBC are proposed. With small additional
memory, the LS-DWT can process multilevel in an interleaved
order and the CS-EBC can process 13 code-blocks in parallel.
The proposed architecture is suitable for large tile size since its
memory requirements are proportional to the square-root of the
tile size. Moreover, the throughput of the proposed architecture
is also increased by the proposed high-speed two-symbol AE
architecture. Thus, the proposed architecture has the highest
throughput compared with other designs in the literature. When
operating at 124 MHz, it can encode HDTV 1920p video at 30
fps in real-time. Therefore, the proposed architecture solves not
only the high cost problem but also the low throughput problem
for designing a JPEG 2000 encoder.
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